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ABSTRACT: The self-knotting dynamics of DNA strands
confined in nanochannels is studied with Brownian simulations.
The model DNA chains are several microns long and placed inside
channels that are 50—300 nm wide. This width range covers the
transition between different metric scaling regimes and the
concomitant drop of DNA knotting probability for channel widths
below ~75 nm. We find that knots typically originate from deep
looping and backfoldings of the chain ends. Upon lowering the

channel width, backfoldings become shallower and rarer and the lifetime of knots decreases while that of unknots increases. This
lifetimes interplay causes the dramatic reduction of knots incidence for increasing confinement. The results can aid the design of
nanochannels capable of harnessing the self-knotting dynamics to quench or relax the DNA topological state as desired.

It is only in relatively recent years that experimental and
theoretical advancements have allowed for addressing the
detailed properties of polymers under spatial confinement and
thus reveal a previously unsuspected richness in their physical
behavior.' "' For these systems, many efforts are still being
spent for establishing the impact that self-and mutual chain
entanglement, a typical consequence of confinement, have on
polymers behavior.>'>™" These investigations are largely
motivated by the implications of polymer confinement in
biological contexts, where it is ubiquitous.

One particular type of entanglement that is drawing much
interest in biopolymer contexts is knotting.'”*°~>* In particular,
several studies have characterized the equilibrium properties of
confined circularized chains in dependence of their topological
state. These include the effect of confinement size and
dimensionality (spheres,”>* slits or slabs,”’ ' channels*>**)
on the knotting probability of the chains and, in turn, the
impact of topology on the chain metric properties. Although
physical knots, such as those shown in the graphical abstract,
cannot be trapped permanently in chains with free ends, they
can still act as long-lived constraints capable of affecting in
quantitative tangible ways various chain properties, including
metric and mechanical ones."’ "> Moreover, these “physical
knots” can interfere with the elongational process of molecules
in nanofluidic devices, an essential prerequisite both for the
detection of protein—DNA interactions*® and for the genome
analysis in lab-on-chip experiments.” For example, DNA
barcoding analysis®”*® relies on a definite correspondence
between the spatial separation of markers in a channel and the
genomic distance between two points in the chain, an
assumption that is impaired by the presence of knots.

Although the well-characterized equilibrium knotting prob-
ability must ultimately originate from the chain internal
dynamics, the connection between these two aspects is still
largely unexplored.
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Here we take a step toward clarifying these issues by
investigating, both theoretically and computationally, the
dynamical changes of knotted state that spontaneously occur
in semiflexible open chains confined inside channels.

This system is an ideal avenue for this endeavor because of
the interesting interplay of equilibrium metric and dynamic
properties arising in chains subject to quasi one-dimensional
confinement.""**~*! In this regard we recall that the polymer’s
longitudinal span (i.e., its extension projected along the channel
axis) follows two different asymptotic scaling laws, named after
Odijk* and de Gennes," according to whether the channel
width, D is appreciably smaller or larger than the chain
persistence length. For pum long DNA chains, the crossover
between these two metric regimes covers the D = 50—100 nm
range® and is accompanied by a change of the chain internal
dynamics, usually detected through the span autocorrelation
time.""**! In the transition region, ym long DNA chains can
still sustain major loops and backfoldings™** favoring self-
entanglement. In fact, the incidence of physical knots in
channel-confined DNA chains is expected to peak in the middle
of the transition region and then drop to vanishin%ly small
values for channel widths smaller than about 75 nm.”

These observations motivated us to address this transition
region and analyze the chain dynamics underpinning the
spontaneous formation and untying of knots.

For definiteness, and to relate to feasible experiments, we
shall consider model DNA chains of contour length L. = 3.6
pm and nominal persistence length I, = S0 nm placed inside
channels of diameter D in the 50—300 nm range. This interval
of D spans from [, to about the bulk gyration radius of the
chain, Rg nm, thereby realizing the conditions for weak
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confinement. For each channel width, the Langevin dynamical
evolution of the confined open chain is started from a fully
elongated, hence unknotted, conformation and followed with
up to 4 independent trajectories for a typical total timespan of
31081LJ, with the Lennard-Jones time unit, 7;; nominally
corresponding to 74 ns, see SI.

To solve the ambiguities inherent in the definition, and
hence detection, of physical knots in open chains, we used the
minimally interfering closure scheme?® to connect the free ends
with a suitable closing arc and then we computed the Alexander
determinants to establish the knotted state. Finally, a running-
averaging procedure is iteratively applied to remove ephemeral
changes of topology over timespans of about 5104TLJ, see SL
Note that, for simplicity and computational convenience, DNA
electrostatic self-interactions are assumed to be completely
screened by counterions and hydrodynamic effects in bulk and
near the channel walls are neglected.* Because of these
simplifications, the nominal mapping of simulation time to real
time is expected to hold approximately. In fact, the comparison
with more detailed models* indicates that the nominal time
mapping (used hereafter) should be multiplied by about 4 for a
more realistic estimate.

Before addressing the entanglement dynamics, we report on
the overall chain metric and knotting properties averaged over
the Langevin trajectories. The time-averaged quantities shown
in Figure 1 are quantitatively consistent with previous Monte
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Figure 1. (a) Normalized end-to-end distance and longitudinal span of
chains of length L. = 3.6 ym confined in channels of various width, D.
(b) Pile-up histograms for the associated incidence of various knots. As
customary, prime knots are labeled by the number of crossings in their
simplest representation followed by a conventional indexing subscript.
The # sign indicates the composition of prime knots. The indicated
errors are calculated from block averaging over intervals of at least 700
ms, which are more than 10X longer than the typical metric
autocorrelation time and knot duration at all channel widths, see
Figure 3.
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Carlo results for an equivalent DNA model®* and hence
support a posteriori the adequate conformational sampling
achieved by the collected trajectories, see SL

As illustrated in Figure 1b, the increase of the chain
longitudinal span and end-to-end distance, R, upon lowering
D is accompanied by the nonmonotonic behavior of the chain
knotting probability previously observed in Monte Carlo
simulations.*®*® In particular, one observes a drop of knots
incidence for channel widths smaller than about 75—100 nm,
that is, well inside the metric crossover region.

Clearly, the equilibrium knotting probability must reflect the
ratio of the typical lifetimes of knotted and unknotted states of
the confined chains. These two key time scales are, however,
not accessible individually in Monte Carlo ap})roaches, which
rely on global, non topology-preserving moves.””**** They can,
instead, be separately probed here where the chain dynamics is
followed over time scale long enough to observe multiple
changes in knotted state at all considered values of D.

This point is aptly illustrated in Figure 2 for a confinement
width D = 125 nm (see Figure S2 for a typical knotted
configuration at a comparable channel width). The upper panel
shows the evolution of the salient chain metric properties
together with the highlighting of the knotting events, that are
the time intervals during which the chain remains knotted. The
major knotting events which last at least 1% of the shown
trajectory duration, are further characterized in panel (b). For
each event this panel illustrates not only the time evolution of
the location of the knot along the chain but also, and most
importantly, the frequent changes of knot type that occur
during a given knotting event. The most frequent changes of
topology, are shown in the graph of panel (c).

By analyzing the succession of knotting events and the time
evolution of the metric properties we computed the salient time
scales governing the changes of chain geometry and topology,
namely, the average autocorrelation time of the longitudinal
span, 7, and the median duration (or lifetime) of knotted and
unknotted states, 7, and 7,. The duration of a knotted state is
the timespan from the formation of the knot to its untying, that
is, the decay to the unknotted state. An analogous definition
applies to the unknotted state duration.

The results are summarized in Figure 3. It is seen that the
span autocorrelation time peaks at D ~ 75 nm and overall
covers the nominal time interval of 30—65 ms. Such time scale
is comparable to other studies that probed the dynamical
behavior of molecules with different contour length, such as the
48.5 kbp long DNA of phage 4. In fact, by using the suggested*'
Rouse-Zimm rescaling of 7, and accounting for the afore-
mentioned factor of 4 correction, the peak value of 7, ranges
from about 0.5 to 1 s according to whether one uses the bare
contour length of A-DNA (16.5 ym) or the augmented one due
to YOYO intercalation (22 pm). These values are consistent
with the 0.6—2 s range of peak values of 7, reported in previous
studies on confined A-DNA.'*¥*

Compared to the metric autocorrelation time, 7, the time
scales associated with the evolution of the topological state
cover different timescales over the explored channel widths.
Interestingly, the trend of the median knot duration, 7, is
qualitatively similar to 7, featuring a peak at around D = 75 nm
followed by a drop by a factor of 2 when D is taken from 75 to
S0 nm.

A different behavior, both qualitatively and quantitatively, is
seen for the median duration of unknotted states. In fact, 7,
shows an increase, rather than a decrease as the channel width
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Figure 2. (a) Time evolution of the end-to-end distance, R,,, and gyration radius, Ry, of a 3.6 um long DNA chain inside a 125 nm wide channel.
Gray background bands mark intervals when the chain is knotted. The darker bands reflect knotting events lasting for more than 1% of the shown
trajectory duration. Their evolution in terms of knot type and location is given in panel (b). (c) Most common dynamical changes of knot type for
the shown trajectory. Their relative statistical weight is shown explicitly if it is larger than 5% and with a dashed line if it is in the 2—5% range. Rarer
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Figure 3. (a) Mean autocorrelation time of the longitudinal span. The
error on the mean is calculated from block averaging over intervals of
at least 700 ms. The median duration of knots and unknots, 7; and 7,
are shown in panels (b) and (c), respectively. The duration
distribution width is conveyed by the dashed lines. They correspond
to the fifth percentiles on each side of the median. More details about
knotted states lifetimes are provided in Figure S4.

is reduced and, more notably, the relative increase going from
D =75 nm down to 50 nm is a factor larger than 10, that is,
much larger than the variation of 7, and 7.

The data in Figure 3 therefore clarify that the progressive
drop of the knotting probability below D = 75 nm is due to
both the decrease of 7, and the concurrent rise of 7, with the
latter clearly being the dominant effect.

In addition, the analysis of the simulated trajectories provides
valuable insight into the dynamical mechanisms responsible for
the steep rise of 7, which, in fact, can be related to the
occurrence of major loops and ends backfolding events.

The influence of end looping on the properties of weakly
confined ym long chains has been the subject of several recent
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investigations.'"*"**** However, their connection with chain
self-knotting has not yet been explored. As a matter of fact,
creating knots necessitates the presence of loops which must be
threaded by one of the chain ends. The specific threading
mechanism and loop length can further affect the chain depth
at which knots are created.*’

For D ~ 70 nm, the average depth of end loopings, i.e. chain
contour length involved in the backfolding of the ends, is about
400 nm and further decreases down to 200 nm at D = 50 nm,
see Figure SS. By comparison, the depth of chain backfoldings
required to create or untie knots is much larger. This fact
emerges from Figure 4, which shows the cumulated probability
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Figure 4. Cumulated probability of the chain depth at which knots are
created or untied. The depth is calculated as contour length of the
shortest of the two possible terminal segments that comprise the
whole knotted region.

distribution for the chain depth at which knots are formed or
untied. Knot creation and untying depths are cumulated
because of the statistical reversibility of equilibrated Langevin
trajectories. In fact, this implies that the role of knot tying and
untying events are exchanged in the time-reversed trajectory.
The data in Figure 4 show that most knots require deep
backfolding of the ends to be formed or untied. In fact, most of
knotting events at D = 62.5 nm occur at a chain depth of 800
nm, that is 20% of the contour length. The same point is
illustrated by the dynamical evolution in Figure S where one
can correlate the relatively rare occurrence of knotting events
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Figure S. Time evolution of (a) the end-to-end distance and gyration
radius and (b) end looping depths of a 3.6 ym long DNA chain inside
a 62.5 nm wide channel. For visual clarity the looping depth of one of
the two ends is subtracted from 1 (green line). Gray background bands
mark intervals when the chain is knotted. The two darker bands reflect
knotting events lasting for more than 1% of the trajectory duration,
and both involve the formation of a trefoil, 3, knot.

with the time evolution of the end looping depth. It is seen that
the two major knotting and unknotting events occur in
correspondence of atypically large backfoldings of the ends.

The effect remains noticeable even at larger channel widths.
In fact, in the D = 125 nm trajectories shown in Figure 2a there
is still a noticeable correlation between the onset/termination
of long-lived knotting events and the large variations of the
end-to-end distance. Furthermore, the comparison of Figures
2a and § gives a clear illustration that the lower occurrence of
knots in the narrower 62.5 nm wide channel is related to the
less frequent incidence of major variations of the end-to-end
separation or end looping depth. Indeed, the duration of the
major knotting events in the two cases is manifestly similar.

The phenomenology described above allows for rationalizing
the interplay of the different metric and topological time scales
of Figure 3 within a physically intuitive and appealing
framework. In particular, it emerges that the major determinant
of the decreasing incidence of knots for D < 75 nm, is the
increasingly large waiting time required to produce loops and
backfoldings of sufficient depth to favor self-entanglement.
Since atypically long loops are required, the duration of
unknotted states becomes much larger than the autocorrelation
time of the longitudinal span. Finally, the moderate decrease of
the depth at which knots are created for increasing confinement
further accounts for the observed decrease of the knot duration,
7 below D = 75 nm. In fact, shallower knots will have a higher
chance of reaching by diffusion the nearest end and hence will
be shorter lived.

One further and intriguing point regards the relationship of
looping and knotting for asymptotically long chains inside
channels. The recent study of Muralidhar et al.** has shown
that, as chain length is increased, the relative difference between
span and end-to-end distance tends to vanish. This fact clearly
downplays the asymptotic impact on the metric properties of
end loopings. However, the fact that backfolding depths grow
sublinearly with L. does neither impair the mechanisms for
creating knots nor prevent the average knotting probability to
increase with chain. In fact, a loop threading event occurring,
for example, at a 300 nm chain depth can create a knot either in
a pm long, as considered here, or in a much longer one. At the
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same time, the average lifetime of knots that are created at a
given depth certainly increases with the chain length because
knots will survive longer if they do not diffuse toward the
nearest end, but toward the farthest one. As a consequence, the
knotting probability will increase with chain length for a given
channel width, in accord with Monte Carlo results** and
general arguments borrowed from the proof of the Frisch—
Delbruck—Wasserman conjecture.*’

We conclude by discussing the formation of complex knots
through the incremental addition of self-entanglement. This is
exemplified by the trajectory in Figure 2b where all major
knotting events involve dynamical changes of knot type. It is
particularly interesting to notice the occurrence of both prime
and composite knots that have an unknotting number larger
than one, such as 5, and 3,#3,. These types of knots cannot be
tied (or untied) by a single strand passage through a loop, but
require multiple instances of elementary knotting (or
unknotting) events.

Clearly, this dynamical buildup of knot complexity can occur
if the typical duration of knotting events, 7, is comparable to
the waiting time between loop threading events, which can be
approximated by 7,. Since the difference between 7, and 7y
diverges for D < 75 nm, the incidence of complex knots should
be dramatically reduced below this channel width. This is
indeed what is observed in Figure 1 and in the trajectory of
Figure 5 where even the major, long-lived knotting events are
locked in the simplest, trefoil (3,), knot type.

To summarize, we used Brownian dynamics simulations to
elucidate the mechanisms leading to the spontaneous tying and
untying of physical knots in model DNA chains that are
confined inside channels of width, D in the 50—300 nm range.
We find that most knots are created by deep backfolding or
looping of the chain ends. As established also in previous
studies,>***' such backfoldings become rarer and shallower
upon reducing D and this, in turn, causes the lifetime of
unknots to increase and that of knots to decrease. The resulting
interplay of knots and unknots lifetimes causes physical knots
to become statistically negligible for D smaller than about 75
nm.

A possible applicative ramification is the tuning of nano-
channels fabrication parameters (width and length) so to
confine DNA over timespans that are either large or small
compared to knots/unknots lifetimes. This ought to allow,
respectively, for relaxing or quenching the topological state of
the confined DNA (e.g,, to minimize knots detrimental effects
on DNA barcoding techniques).
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Additional details of the DNA model, simulation setup, knot
detection and localization, and the analysis of various metric
and dynamical observables are supplied. This material is
available free of charge via the Internet at http://pubs.acs.org.
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